

Leitfaden für das Berechnungsblatt zu baustatischen Nachweisen von MHM-Bauteilen

Stand April 2014

Vorwort

Das vorliegende Handbuch soll eine Hilfestellung bei der Anwendung der beiden Bemessungshilfen Wandscheibenbemessung und Sturzbemessung geben. Bei den beiden Berechnungsblättern handelt es sich um Bemessungs- und Nachweisschemas für die baustatischen Nachweise von Massiv-Holz-Mauer -Wandscheiben und -Stürzen nach DIN EN 1995-1-1:2010-12, die mit vorwiegend ruhenden vertikalen sowie horizontalen Einwirkungen beansprucht werden. Bei der Anwendung der Excel- basierenden Berechnungshilfen sind die entsprechenden Funktionen vor dem Einsatz zu prüfen. Die Hinweise im jeweiligen Berechnungsmodul sind zu beachten.

Inhaltsverzeichnis:

Einführung/ rechtliche Hinweise	2
Bemessung von Wandscheiben unter vertikaler Beanspruchung mit Kopflast nach DIN EN 1995-1-1:2010-12 Einleitung Bedienung	3 3
Bemessung von Sturz-Bauteilen unter Biegebeanspruchung nach DIN EN 1995-1-1:2010-12 Einleitung Bedienung	12 12
Versionen	19
Kontakt	19

Einführung/rechtlicheHinweise:

Bei der Verwendung dieser Berechnungsblätter erklären Sie sich mit den folgenden Bestimmungen einverstanden. Die Erstellung der Berechnungsformeln in diesen Programmen erfolgte mit der größtmöglichen Sorgfalt. Die Programme wurden mehrfach auf richtige Berechnungsergebnisse überprüft. Wir weisen allerdings darauf hin, dass Fehler in Softwareprogrammen nicht völlig ausgeschlossen werden können, auch nicht durch die Verwendung von Programmierschutz- und Passwortfunktionen, welche die im Programm vorhandenen Berechnungsformeln und Feldreferenzen gegen versehentliche Veränderungen durch den Bearbeiter weitestgehend schützen. Eine vorsätzliche Veränderung der Programme kann nicht ausgeschlossen werden.

Die Programme können nicht die spezifischen Gegebenheiten jedes Einzelfalls berücksichtigen.

Es sind daher die üblichen ingenieursmäßigen Plausibilitätskontrollen durchzuführen. Bei der Verwendung der aufgeführten Informationen und Daten sowie der Ergebnisse dieser Programme ist der Anwender und/ oder der projektierende Ingenieur für die Prüfung und die Sicherstellung verantwortlich, dass die den aufgeführten Informationen, Daten und Ergebnissen zugrunde liegenden Annahmen mit den am Einsatzort vorliegenden Gegebenheiten übereinstimmen.

Die Programme sind als Hilfsmittel für den Anwender/projektierenden Ingenieur zu verstehen.

Die Verantwortung für die Richtigkeit der ermittelten statischen Ergebnisse trägt ausschließlich der Anwender/ projektierende Ingenieur, der die statische Berechnung vornimmt. Weder die bauart Konstruktions GmbH & Co. KG. als Ersteller des Moduls noch die MHM Entwicklungs GmbH als Inhaber des Moduls haften für Fehler, Mängel oder Schäden, die aus Fehler des Programms, bei der Anwendung der Programme oder durch Veränderungen an den Programmen entstehen, sowie diese nicht durch Vorsatz oder grobe Fahrlässigkeit der Beiden vorgenannten Parteien oder ihrer Erfüllungsgehilfen verursacht wird.

Bemessung von Wandscheiben unter vertikaler Beanspruchung mit Kopflast nach DIN EN 1995-1-1:2010-12

Einleitung

Dieses Berechnungsblatt dient dem baustatischen Nachweis nach DIN EN 1995-1-1:2010-12 von MHM-Wandscheiben-Bauteilen, die unter vertikalen Beanspruchungen mit Kopflast belastet werden.

Das Berechnungsblatt ist auf vier Excel-Tabellenblättern wie folgt aufgebaut:

Deckblatt:Startseite und Darstellung der rechtlichen Grundlagen für die AnwendungEingabe:Eingabe der Basisdaten für die baustatische NachweisführungNachweisführung:Darstellung der erforderlichen Nachweise und Möglichkeit der ÜberprüfungAusgabeblatt:Zusammenfassung von allen Eingabedaten, Nachweisen und Ergebnissen

Bedienung:

Das Berechnungsblatt für die Bemessung von MHM-Wandscheiben wird über die Excel-Anwendung gestartet. Je nach Sicherheitseinstellungen ihres PC's erhalten Sie eine Sicherheitswarnung über unsichere Makros und werden gefragt, ob diese aktiviert werden sollen. Betätigen Sie den Button "Makros aktivieren".

Sind die Sicherheitseinstellungen Ihres Excel-Programms auf "Hoch" eingestellt, erhalten Sie ebenfalls vor Programmstart die Information, dass das Anwenderprogramm nicht autorisierte und/ oder deaktivierte Makros enthalten, die aufgrund von Sicherheitseinstellungen nicht aktiviert werden können.

Auf dem Deckblatt sind die rechtlichen Bestimmungen für die Verwendung des Bemessungs-Programms dargestellt.

Durch Klicken des START-Buttons bestätigen Sie diese Hinweise und gelangen direkt zur Eingabemaske.

Massiv-Holz-Mader Entwicklungs GmbH Auf der Geigerhalde 41 D-87459 Pfronten-Weißbach Tel.: ++49 (0) 8332 92 33 19 Fax.: ++49 (0) 8332 92 33 11

Berechnungsblatt zum baustatischen Nachweis von MHM-Bauteilen, Wandscheibe unter vertikaler Beanspruchung mit Kopflast nach DIN EN 1995-1-1:2010-12

Bei der Verwendung dieses Programmes erklären Sie sich mit den folgenden Bestimmungen einverstanden.

Die Erstellung der Berechnungsformeln in diesem Programm erfolgte mit der größtmöglichen Sorgfalt. Das Programm wurde mehrfach auf richtige Berechnungsergebnisse überprüft. Wir weisen allerdings darauf hin, dass Fehler im Softwareprogramm nicht völlig ausgeschlossen werden können und durch die Verwendung von Programmierschutzfunktionen und Passwortfunktionen die im Programm vorhandenen Berechnungsformeln und Feldreferenzen gegen versehentliche Veränderung durch den Bearbeiter weitestgehend geschützt sind. Eine vorsätzliche Veränderung des Programms kann jedoch nicht ausgeschlossen werden.

Das Programm kann die spezifischen Gegebenheiten des Einzelfaltes nicht berücksichtigen. Es sind daher die üblichen ingenieurmäßigen Plausibilitätskontrollen durchzuführen.

Bei der Verwendung der aufgeführten Informationen und Daten sowie der Ergebnisse dieses Programmes ist der Anwender und/oder der projektierende Ingenieur verantwortlich für die Prüfung und die Sicherstellung, dass die den aufgeführten Informationen. Daten und Ergebnissen zugrundegelegten Annahmen mit den am Einsatzort vorliegenden Gegebenheiten übereinstimmen.

Das Programm ist als Hilfsmittel für den Anwender / projektierenden Ingenieur zu verstehen.

Die Verantwortung für die Richtigkeit der ermittelten statischen Ergebnisse trägt ausschließlich der Anwender / projektierenden Ingenieur, der die statische Berechnung vornimmt.

Weder die bauart Konstruktions GmbH & Co. KG als Ersteller des Moduls noch die MHM Entwicklungs GmbH als Inhaber des Moduls haften für Fehler, Mängel oder Schäden, die durch Fehler des Programms, durch Fehler bei der Anwendung des Programms, Fehler durch Veränderung am Programm enstehen, soweit diese nicht durch Vorsatz oder grobe Fahrlässigkeit der beiden vorgenannten Parteien oder ihrer Erfüllungsgehilfen verursacht wird.

Version 3.1 Stand März 2014

Auf dem Eingabeblatt geben Sie bitte die erforderlichen Daten für die Bemessung der Wandscheibe in die Eingabefelder mit weißem Hintergrund ein.

Beginnen Sie mit der Eingabe des Bauvorhabens und der Position für das zu berechnende Bauteil.

Berechnungsbla	att zum baustatischen Nachw	veis von MHM-Bauteilen	
Bauvorhaben:	Test	Position:	1
Datum	24.04.2014		

Orientierung äußerer Brettlage	en	vertikal	Anzahl der Brettlagen	n =	9	
Bauteil-/Wandlänge	1 =	1000 mm	Anzahl statisch wirksamer Brettlagen	n =	9	
Bauteilhöhe	h =	3250 mm	Einzelbrettdicke	d. =	23	mm
stat. wirksame Bauteildicke	d =	207 mm	Festigkeitsklasse		C16	
tatsächliche Bauteildicke	d -	207 mm				
Brettbreite bx (vertikale Brett	lagen):		180 mm			
Brettbreite by (horizontale Bre	ettlagen):		180 mm			

Im ersten Abschnitt "Angaben zum Bauteil" geben Sie die Höhe und Länge des Bauteils ein. Die Länge ist auf 6000 mm und die Höhe auf 4000 mm begrenzt. Im nächsten Feld kann die Orientierung äußerer Decklagen (horizontal oder vertikal) verändert werden. Bitte beachten Sie, dass die horizontale Ausrichtung nur in Sonderfällen unter Einhaltung der Zulassung und nach Absprache mit dem Hersteller erfolgen kann.

Die Anzahl der Brettlagen kann, in
Zweierschritten, von 5 bis 15 gewählt werden.
Die Bauteildicke errechnet sich automatisch aus
der festgelegten Brettdicke von 23 mm. Ebenso
kann hier zwischen den Festigkeitsklassen C16
und C24 gewählt werden.

Abschließend wird in diesem Abschnitt die Brettbreite eingestellt. Wenn mit einer fixen Brettbreite produziert wird, können die Breiten im, durch die Zulassung gegebenen, Rahmen von 140 bis 260 mm frei gewählt werden. Ist keine Fixbreite der Bretter gegeben, muss der ungünstigste Fall mit bx = 260 mm und by = 140 mm eingegeben werden.

Angaben zum Bauteil

Orientierung äußerer Brettlage	en	vertikal	
Bauteil-/Wandlänge	1 =	1000	mm
Bauteilhöhe	h =	3250	mm
stat. wirksame Bauteildicke	d =	207	mm
tatsächliche Bauteildicke	d =	207	mm

Im zweiten Abschnitt "Angaben zu Einwirkungen" werden zuerst die Bauteilnutzungsklassen wie auch die Lasteinwirkungsdauer eingestellt. Die Anwendung für MHM-Wandelemente ist laut Zulassung nur in den Nutzungsklassen 1 und 2 erlaubt. Diese wird durch den Anwender je nach Anwendungsbereich des Bauteils bestimmt. Mit Eingabe der Nutzungsklasse und der Lasteinwirkungsdauer errechnet sich automatisch der Modifikationsbeiwert kmod. Direkt darunter erfolgt die Eingabe der auf die Wand wirkenden charakteristischen Lasten. Das Programm rechnet diese automatisch in die entsprechenden Design-Werte um.

ndig g _e z/Verkehr p _e ndig g _e z/Verkehr p _e	1 = 1 = 2 =	10,0 15,0 0,0	kN/m kN/m kN/m	$q_{e1} = 1,35 \times g_{k1} + 1,5$	x p _{k3} =	36,0	kN/m
z/Verkehr p _e ndig g _e z/Verkehr p _e	1 = 2 =	15,0	kN/m kN/m	$q_{c1} = 1,35 \times g_{k1} + 1,5$	x p _{k1} =	36,0	kN/m
ndig g _e z/Verkehr p _e	2 =	0,0	kN/m				
z/Verkehr p _k	-		14572201				
		0,0	kN/m	$q_{a2} = 1,35 \times g_{x2} + 1,5$	x p _{k2} =	0,0	kN/m
w	=	0,0	kN/m²	w _c = 1,5	× w _k =	0,0	kN/m²
Px		2,0	kN/lfm (Wand)	P _c = 1,5	$5 \times P_k =$	3,0	kN/lfm
ei	=	60	[mm]	Achtung: Eingab	e der AL	Ismitte	/ Last mit
e,		0	[mm]	entspr	echende	m Vorz	eichen II
	e, e,	w = P _x = e ₁ = e ₂ =	w = 0.0 $P_x = 2.0$ $e_1 = 60$ $e_2 = 0$	$P_{K} = \frac{0.0 \text{ dy/m}^{2}}{2.0 \text{ kN/lfm}}$ (Wand) $e_{1} = 60 \text{ [mm]}$ $e_{2} = 0 \text{ [mm]}$	$w_{e} = 0,0 \text{ dym}^{-1} \qquad w_{e} = 1,3$ $P_{x} = 2,0 \text{ kN/lfm (Wand)} \qquad P_{e} = 1,5$ $e_{1} = 60 \text{ [mm]} \qquad \text{Achtung: Eingab}$ $e_{2} = 0 \text{ [mm]} \qquad \text{entspr}$ (vgl. n	$w_{c} = 1,5 \times W_{c} = 1,5 \times W_{c} = 1,5 \times P_{c} = 2,0 \text{ kN/lfm (Wand)}$ $P_{c} = 1,5 \times P_{c} = 1,5 \times P_{c} = 1,5 \times P_{c} = 0 \text{ [mm]}$ $e_{1} = 60 \text{ [mm]}$ Achtung: Eingabe der Au entsprechende (vgl. nebensteil	$w_{e} = 0,0 \text{ dow} \text{ m}^{2}$ $w_{e} = 1,5 \times W_{e} = 0,0$ $P_{e} = 2,0 \text{ kN/lfm (Wand)}$ $P_{e} = 1,5 \times P_{e} = 3,0$ $e_{1} = 60 \text{ [mm]}$ Achtung: Eingabe der Ausmitte $e_{2} = 0 \text{ [mm]}$ (vgl. nebenstehender

Sowohl aus darüber liegenden Geschossen als auch aus Decken ergeben sich aufgrund der Linienlasten unterschiedliche Ausmitten.

Konstruktive Ausmitten		
Ausmitte aus oberen Geschossen	e ₁ =	60 [mm]
Ausmitte aus Decken	e ₂ =	0 [mm]

Im letzten Abschnitt "Angaben zum Verbindungsmittel" wird eingestellt, ob die Elemente standardgemäß mit 2 Nägeln oder mit 4 Nägeln je Brettkreuzungspunkt gefertigt werden, um eine bessere Steifigkeit zu erreichen. Bei Wahl dieser Maßnahme ist sicherzustellen, dass bei der Produktion die entsprechende Anzahl an Nägeln verwendet wird.

Angaben zum Verbindungsmittel	
Nageldurchmesser d _n	2,5 mm
Randabstand der Nägel	30,0 mm
(In der Berechnung wird der Randabstand zu 30mm an	ngesetzt)
Anzahl der Nägel je Kreuzungspunkt	2
Charakt. Tragfähigkeit rechtwinkelig zu Stabachse	400,0 [N]
Verschiebungsmodul für Gebrauchstauglichkeit K _{ser} :	300,0 [N/mm]
Verschiebungsmodul für Tragfähigkeit K _{u,mean} :	300,0 [N/mm]

Falls eine zusätzliche Erhöhung der Tragfähigkeit erforderlich ist, kann eine zusätzliche Verschraubung angeordnet werden.

Schrauben zur Verstärkung der Tragfähigkeit Anordnung von zusätzlicher Verschraubung nein

Wird die Abfrage zur Anordnung einer zusätzlichen Verschraubung mit "JA" beantwortet, erscheint eine Eingabemaske zur Definition der Verschraubung.

Hier müssen der Schraubendurchmesser, welcher minimal 8 mm betragen darf, und die Anzahl der Schrauben je m² angegeben werden. Die Länge der Schrauben richtet sich automatisch nach der Bauteildicke. Wie auch bei den Nägeln ist bei Anordnung einer zusätzlichen Verschraubung dafür Sorge zu tragen, dass diese Maßnahme entsprechend ausgeführt wird.

Anordnung von zusätzlicher Verschraubung	ja
Schraubendurchmesser d =	8 [mm]
Länge der Schraube I >	207 [mm]
Anzahl Schrauben je qm	20 [Stück]
Verschiebungsmodul Kser:	2476 [N/mm]
Verschiebungsmodul Ku,mean:	1650 [N/mm]

Im unteren Bereich der Seite werden die Materialkennwerte des gewählten Holzes (C16 oder C24) angezeigt.

Materialkennwerte						
charakteristische Festigl	keits- un	d Steifig	keitswerte für NH C16			
Biegung		las	16,0 [MN/m=]	Elastizitätsmodul parallel	ELman	8000,0 [MN/m ²]
Zug paraliel		fine	10,0 [MN/m ²]	Elastizitätsmodul 5% Quantil	ELSE	5400,0 [MN/m ²]
Druck parallel		fear	17,0 [MN/m²]	Schubmodul	Gman	500,0 [MN/m2]
Schub und Torsion	ke.	free	2,0 [MN/m ²]	Schubmodul 5% Quantil	$G_{12} = \frac{3}{3} \times G_{max}$	333,3 [MN/m ²]
Robdichte		Px.	310,0 [kg/m#]	Rollschubmodul	Gr.maan = 0,10 x Groan	50,0 [MN/m2]
Rohdichte		0-	370,0 [kg/m ²]		$G_{R,11} = \frac{2}{3} \times G_{R,mapt}$	33,3 [MN/m2]

Die Eingabe ist somit vollständig. Durch den Button "Nachweisführung" starten Sie die Bemessung.

Der Anwender gelangt nun automatisch auf die Seite "Nachweisführung".

iege Normal- und Schu	ospannungsnachw	eise aus Plat	tenbea	nspruchu	ng und ver	tikaler Scheibe	nbeanspruchung		
$\left(\frac{\sigma_{u,0,d}}{f_{u,0,d}}\right)^* + \frac{\sigma_{u,d}}{f_{u,d}} \leq 1$	\Rightarrow	0.01	•	0,10		0,10	Ausnutzungsgrad	10%	О.К.
$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,d}}{f_{m,d}} \le 1$	\Rightarrow	0.03	•	0,10	*	0.12	Ausnutzungsgrad	12%	О.К.
$\frac{\overline{t_d}}{f_{v,d}} \leq 1$	\Rightarrow					0,02	Ausnutzungsgrad	2%	0.K.
berlagerung der Spannur	ngen aus Plattenbes	anspruchung	<mark>, vertik</mark>	aler und hi	orizontaler	(Kopflast) Sob	ebenbeanspruchung		
$\left[\left(\frac{\sigma_{z,0,d}}{\sigma_{z,0,d}}\right)^2 + \frac{\sigma_{z,d}}{\sigma_{z,d}}\right]$	$+\left(\frac{\sigma_{a,0,a}}{2}\right)^2 \leq 1$	⇔				0,11	Ausnutzungsgrad	TEX	0.K.
(Jald) Ind	(Jear)								
$\left[\left(f_{+0,d}\right) - f_{-d,d}\right]$ Anned aus Plane lachweis der Verbindungs $I_{a Res} = \sqrt{(N_{a,Rath} + N_{d})}$	$(f_{c,b,e})$ + Kopflast mittelfür Kombination $(xepr_{c})^{2} + N_{0,kopr_{c}}^{2}$	= 239 M	nbean:	spruchung < R _e =	z.vertikaler <u>K_{mos} · R_s</u> Zu	und horizonta	let Scheibenbeanspruchung 31 N Ausmutzungsgrad	82%	0.K.
$\left[\left(f_{e,0,d} \right) - f_{m,d} \right]$ Anned aus Plane Jachweis der Verbindungs $N_{a,Nex} = \sqrt{(N_{a,Nex}) + N_{a}}$ Jachweise im Grenzzy	$(f_{c,0,\varepsilon})$ + Kopflast mittel für Kombinatio $(pepr y)^2 + N_{c,pepr}^2$ istandzustand de	n aus Platte - n = 239 M er Gebraus	nbean: I .	spruchung < R _g =	2. vertikaler <u>K_{mod} · R_k</u> 7u L (SLS):	= 2	let Scheibenbeanspruchung 91 N Ausmutzungsgrad	82%	0.K.
$\begin{bmatrix} (f_{e,0,d}) & f_{m,d} \\ Anteil aus Plane \end{bmatrix}$ Jachweis der Verbindungs $V_{\alpha Nex} = \sqrt{(N_{\alpha, Nath} + N_{\alpha})}$ Jachweise im Grenzzy ferformungsnachweis unte	$(f_{c,0,d})$ + Kopflast mittel fix Kombinets $(Jept y)^2 + N_{c,Nept}^2$ estandzustand de r Plattenbeansprus	n aus Platte - - 239 h er Gebraus hung aus W	nbean: I ·	ssruchung < R _s = glichkei ospeuchur	z. vertikaler <u>k_{mod} · R_s</u> <u>7</u> u L (SLS): ng:	- 2	ler Scheibenbeanspruchung 91 N Ausmutzungsgrad	82×	0.K.
$\begin{bmatrix} \left(f_{e,0,d} \right) & f_{m,d} \\ \text{Antel aus Plane} \end{bmatrix}$ Antel aus Plane $V_{\alpha \text{ Poss}} = \sqrt{(N_{\alpha \text{ , path}} + N_{\alpha })}$ Active is der Verbindungs $V_{\alpha \text{ Poss}} = \sqrt{(N_{\alpha \text{ , path}} + N_{\alpha })}$ Active ise im Grenzzy (etformungsnachweis unter $v^{\beta} = \frac{1}{1 - \frac{F_{e}}{P_{m}}} \cdot (w' + \Delta w_{p})$	$(f_{c,0,e'})$ + Kopflast mittelfüc Kombination $(Rept. v.)^2 + N_{d,Rept.}^2$ estandzustand de er Plattenbeanspruc $merf.) - \Delta w_{Vernet.} =$	nn aus Platte 	nbeanu J - Instau Indbea	spruchung < R _e = glichkeit nspruchur <	1. vertikaler <u>k_{mod} · R_a</u> <u>7</u> w 1. (SLS): <u>1</u> <u>300</u>	- 2 - 2	ler Scheibenbeanspruchung 91 N Ausnutzungsgred 18 mm Ausnutzungsgred	82×	0.K. 0.K.
$\begin{bmatrix} \int f_{a,0,d} & \int f_{m,d} \\ Antel aus Plane \end{bmatrix}$ Antel aus Plane $V_{a,Nex} = \sqrt{(N_{a,Rate} + N_{a})}$ Nachweise im Grenzzu Auformungsnachweis untel w ^a = \frac{1}{1 - \frac{F_{a}}{P_{ab}}} \cdot (w' + \Delta w_{a}) ' Verformungsantelle, die	$(f_{c,0,e})$ + Kopflast mittelfüc Kombinativ $(x_{0}p_{e},v)^{2} + N_{2,Npr}^{2}$ istandzustand de inflattenbeansprus $m_{e}p_{e}^{2}) - \Delta W_{Vm,ept} =$ oggfs: aus konstrukt	nn aus Platte = 239 f er Gebraus hung aus M 1,7 n iven Ausmitt	nbeani J - indbea m en resu	spruchung < R _z = splichkeit nspeuchur < dieren, sin	2. vertikaler <u>K_{mod} · R_i</u> <u>7</u> u 1 1 3 00 od zarstrzko	- 2 - 2	ler.Scheibenbeanspruchung 91 N Ausmutzungsgrad 1,8 mm Ausmutzungsgrad	82×	0.K.
$\begin{bmatrix} \left(f_{x,0,x} \right) & f_{m,x} \\ Antel aus Plane \end{bmatrix}$ Nachweis der Verbindungs Nachweis der Verbindungs Nachweis der Verbindungs Varhen eise im Grenzzw Verformungsnachweis unte $w^{\mu} = \frac{1}{1 - \frac{F_{\mu}}{P_{E_{\mu}}}} \cdot \left(w' + \Delta w_{\mu} + \frac{1}{2} + \frac{F_{\mu}}{P_{E_{\mu}}} + \frac{1}{2} + \frac{F_{\mu}}{2} + \frac{1}{2} + \frac{F_{\mu}}{2} $	$(f_{c,0,d})$ + Kopflast mittel für Kombinativ $(pept, y)^2 + N_{d,Nept}^2$ estandzustand de er Plattenbeansprus $m_{eff}(-\Delta W_{Venenf}) =$ orgifs: aus konstrukt sotizontale Scheibe	nn aus Platte = 239 M er Gebraus thung aus M 1,7 m iven Ausmitt obeanspruci	nbean i hstau indbea nm en resu	spruchung < R _g = glichkeit nspruchur < dtieren, sin (opflast)	a, vertikaler <u>k_{mod} · R_s</u> 7 u t (SLS): ogl <u>1</u> 300 od zusätzlo	- 2 - 2	ler Scheibenbeanspruchung 91 N Ausnutzungsgrad 18 mm Ausnutzungsgrad	82×	0.K.
$\begin{bmatrix} \int_{x,0,x} & \int_{-\infty,x} \\ Antel aus Plane \end{bmatrix}$ Antel aus Plane Varies der Verbindungs Varies = $\sqrt{(N_{0,Bath} + N_{0})}$ Nachweise im Grenzzu Verformungsnachweis unter $w^{\mu} = \frac{1}{1 - \frac{F_{\mu}}{P_{E}}} - (w' + \Delta w_{\mu})$ ' Verformungsnachweis für $V = \gamma_{\mu} \cdot h^{-2}$	$(f_{c,0,d})$ + Kopflast mittelfücKombination (Kopf v) ² + $N_{0,Nopf}^2$ (standzustand de er Plattenbeansprus $merf$) - ΔW_{Vernef} = 9 ggfs: aus konstrukt solicontale Scheibe 4.5 mm	n aus Platte = 239 f er Gebraus hung aus M 1,7 n iven Ausmitt nbeanspruci <	nbeani i indbear mm en resu bung IX Val	spruchung $< R_{z} =$ splichkeit cspcuchur < dtieren, sin copilasti $i = \frac{h}{5}($	p. vertikales <u>k_mod · Rs</u> 7 u t (SLS): ogʻ <u>1</u> 300 od zursitzika 00	= 2 = 10	let.Scheibenbeanstruchung 91 N Ausmutzungsgrad 1.8 mm Ausmutzungsgrad ihtigen.	82×	0.K. 0.K.

Diese Seite fasst die Ergebnisse der Berechnung zusammen. Das Programm führt die Nachweise im Grenzzustand der Tragfähigkeit und im Grenzzustand der Gebrauchstauglichkeit. Hier wird der jeweilige Ausnutzungsgrad in % angegeben und angezeigt, ob der Nachweis erbracht wurde oder nicht.

	CALLER OF THE PROPERTY OF THE		
OK " stabt für einen erbrachten Nachweig	nbeanspruchung		
" Achtung! " weist auf eine zu große Beanspruchung hin.	Ausnutzungsgrad	83%	О.К.
	Ausnutzungsgrad	111%	Achtung!
Mas	siv-Hoiz-Mauer		

Sind einzelne oder alle Nachweise fehlgeschlagen und mit einem "Achtung!" markiert, gelangt man über den Button "**Zurück zur Eingabe**" wieder zur Eingabemaske und kann die Daten korrigieren und den Nachweis erneut versuchen.

etormungsnachweis unt	er Plattenbeanspruchung aus Wir	dbeanspruchung.					
$F = \frac{1}{1 - \frac{F_d}{P_{\chi_1}}} \cdot \left(w^2 + \Delta w_1\right)$	$(array) = \Delta w_{2rayof} = 46.6 \text{ m}$	" > <u>3</u>	<i>l</i> =	10,8 mm	Ausnutzungsgrad	431% Achtung!	
Verformungsanteile, di	e ggfs. aus konstruktiven Ausmitte	n resultieren, sind zu	sätzlich zu ber	ücksichtigen.			
eformungsnachweis für	horizontale Scheibenbeanspruch	ung (Kopflast)					
$v = \gamma_{v} \cdot h$ *	4,5 mm <	$v_{ai} = \frac{h}{500}$	-	6,5 mm	Ausnutzungsgrad	69%	0
	Zurück zur Eingabe	Druckvors	ichau	Aus	qabe	Speichem	ĺ
			-			-	9

Ein zweiseitiges Protokoll zum Nachweis kann über "Druckvorschau" eingesehen oder über "Ausgabe" direkt gedruckt werden. Mittels "Speichern" wird eine Kopie der ausgefüllten Arbeitsmappe gespeichert.

	Zurück zur Eingabe	Druckvorschau	Ausqabe	Speichem
MHM lassiv-Holz-Mauer				

Die genaue Berechnung können Sie im Arbeitsblatt "Berechnung Wand" und "Berechnung Kopflast" nachschlagen.

Bemessung von Sturz-Bauteilen unter Biegebeanspruchung nach DIN EN 1995-1-1:2010-12

Einleitung

Dieses Berechnungsblatt dient dem baustatischen Nachweis nach DIN EN 1995-1-1:2010-12 von MHM-Sturz-Bauteilen unter Biegebeanspruchungen.

Das Berechnungsblatt ist auf vier Excel-Tabellenblättern wie folgt aufgebaut:

Deckblatt:	Startseite und Darstellung der rechtlichen Grundlagen für die Anwendung
Eingabe:	Eingabe der Basisdaten für die baustatische Nachweisführung
Nachweisführung:	Darstellung der erforderlichen Nachweise und Möglichkeit der Überprüfung
Ausgabeblatt:	Zusammenfassung von allen Eingabedaten, Nachweisen und Ergebnissen

Bedienung

Das Berechnungsblatt für die Bemessung von MHM-Sturz-Bauteilen wird über die Excel-Anwendung gestartet. Je nach Sicherheitseinstellungen ihres PC´s erhalten Sie eine Sicherheitswarnung über unsichere Makros und werden gefragt, ob diese aktiviert werden sollen. Betätigen Sie den Button "Makros aktivieren".

Sind die Sicherheitseinstellungen Ihres Excel-Programms auf "Hoch" eingestellt, erhalten Sie ebenfalls vor Programmstart die Information, dass das Anwenderprogramm nicht autorisierte und/ oder deaktivierte Makros enthalten, die aufgrund von Sicherheitseinstellungen nicht aktiviert werden können.

Auf dem Deckblatt sind die rechtlichen Bestimmungen für die Verwendung des Bemessungs-Programms dargestellt.

Durch klicken des **START** Buttons bestätigen sie diese Hinweise und gelangen direkt zur Eingabemaske.

Massiv-Holz-Mauer Entwicklungs GmbH Auf der Geigerhalde 41 D-87459 Pfronten-Weißbach Tel.: ++49 (0) 8332 92 33 19 Fax.: ++49 (0) 8332 92 33 11

Berechnungsblatt zum baustatischen Nachweis von MHM-Bauteilen, Sturz unter Biegebeanspruchung nach DIN EN 1995-1-1:2010-12

Bei der Verwendung dieses Programmes erklären Sie sich mit den folgenden Bestimmungen einverstanden.

Die Erstellung der Berechnungsformein in diesem Programm erfolgte mit der größtmöglichen Sorgfalt. Das Programm wurde mehrfach auf richtige Berechnungsergebnisse überprüft. Wir weisen allerdings darauf hin, dass Fehler im Softwareprogramm nicht völlig ausgeschlossen werden können und durch die Verwendung von Programmierschutzfunktionen und Passwortfunktionen die im Programm vorhandenen Berechnungsformeln und Feldreferenzen gegen versehentliche Veränderung durch den Bearbeiter weitestgehend geschützt sind. Eine vorsätzliche Veränderung des Programms kann jedoch nicht ausgeschlossen werden.

Das Programm kann die spezifischen Gegebenheiten des Einzelfalles nicht berücksichtigen. Es sind daher die üblichen ingenieurmäßigen Plausibilitätskontrollen durchzuführen.

Bei der Verwendung der aufgeführten Informationen und Daten sowie der Ergebnisse dieses Programmes ist der Anwender und/oder der projektierende Ingenieur verantwortlich für die Prüfung und die Sicherstellung, dass die den aufgeführten Informationen, Daten und Ergebnissen zugrundegelegten Annahmen mit den am Einsatzort vorliegenden Gegebenheiten übereinstimmen.

Das Programm ist als Hilfsmittel für den Anwender / projektierenden Ingenieur zu verstehen.

Die Verantwortung für die Richtigkeit der ermittelten statischen Ergebnisse trägt ausschließlich der Anwender / projektierenden Ingenieur, der die statische Berechnung vornimmt.

Weder die bauart Konstruktions GmbH & Co. KG. als Ersteller des Moduls noch die MHM Entwicklungs GmbH als Inhaber des Moduls haften für Fehler, Mangel oder Schäden, die durch Fehler des Programms, durch Fehler bei der Anwendung des Programms, Fehler durch Veränderung am

Programm enstehen, soweit diese nicht durch Vorsatz oder grobe Fahrlässigkeit der beiden vorgenannten Parteien oder ihrer Erfüllungsgehilfen verursacht wird.

Version 2.1 Stand Marz 2014 START

Auf dem Eingabeblatt geben Sie bitte die erforderlichen Daten für die Bemessung der Sturzelemente in die Eingabefelder mit weißem Hintergrund ein.

Berechnung	sblatt	zum b	austatische	n Nachwe	is von Mi	HM-Bauteile	n	
Bauvorhaben:					Positio	n: 1		
Datum:	24.04.2	014						
Angaben zum B	auteil				Decklage	horiz=0/vert=1	1	
Stützweite	1 =	2000 mn	n		Anzahl de	er Brettlagen n =	7	
Bauteilhöhe	h =	450 mm	п		Einzelbre	ttbreite d _e =	23 mm	
Bauteildicke	d =	161 mr	n		Festigkei	tsklasse	C24	
Brettbreite bx (vert	tikale Bret	tlagen):	200 mm		System	1:		
Brettbreite by (hori	zontale Br	ettlagen):	200 mm		e +	<u> </u>		1111111
					E			
Angaben zum V Nageldurchmesser	/erbindu d_	ngsmitte	2,5 mm		450			
Randabstand der N	idel >		7.0 d	17.5	-	~		
(In der Berechnung	wird der I	Randabstan	d zu 30mm anges	etzt)				1
Anzahl der Nägel je	Kreuzung	sounkt	2			-		
Charakt, Tragfähigi	keit rechtw	inkelig zu S	Stabachse	400,0 [N]			2000 mm	
Verschiebungsmodu	ul für Gebr	auchtauglic	hkeit Kser:	300,0 [N/mm]				
Angaben zu Ein	wirkung	en						
Bauteilnutzungsklas	se NKL		1					
Lasteinwirkungsdau	er		mittel	\Rightarrow	Modifikat	ionsbeiwert k _{nat} r	= 0,8	
Linienlasten	ständig	g,	= 4,7 kN/m					
	Nutz/Ver	kehr p _s	= 2,0 kN/m		q _d = 1,35	i x g _k + 1,5 x p _k =	9,3 kN/m	
Materialkennwe	erte							
charakteristische Fe	astigkeits-	und Steifigl	keitswerte für NH (224				
Biegung	fax	24,0 [M	N/m²]		Elestizită	tsmodul parallel	Ecner	11000,0 [MN/m²]
Zug parallel	FLAR	14,0 [M	N/m²]		Elastizitat	tsmodul 5% Quantil	E _{0.05}	7400,0 [MN/m ²]
Druck parallel	f.c.0.x	21,0 [M	N/m²]		Schubmo	idul	Gmeen	690,0 [MN/m²]
Druck rechtwinklig	f., H0, N	2,5 [M	N/m²]		Schubmo	dul 5% Quantil	$G_{05} = \frac{2}{3} \times G_{maan}$	460,0 [MN/m ²]
Schub und Torsion	fick	2,0 [MI	N/m²]		Rollschub	lubom	Ga.maan = 0,10 x	Gmaa 69,0 [MN/m ²]
Rohdichte	P.	350,0 (kg]/m²]				$G_{8,00} = \frac{1}{3} \times G_{8,m}$	46,0 [MN/m ²]
				Nachweis	führung	Ausgab	e	Speichern
MHM								
Massiv-Holz-Mauer	1							

Beginnen Sie mit der Eingabe des Bauvorhabens und der Position für das zu berechnende Bauteil.

Berechnung	sblatt zum baustatisch	en Nachweis von MHM	I-Bauteilen
Bauvorhaben:	Test	Position:	1
Datum:	24.04.2014		

Massiv-Hoiz-Mayer*

Stützweite	1 =	2000 mm	
Bauteilhöhe	h =	450 mm	
Bauteildicke	d =	161 mm	
Brettbreite bx (v	vertikale Bre	ttlagen):	260 mm
Brettbreite by (h	140 mm		

Im ersten Abschnitt "Angaben zum Bauteil" werden die Sturzweite und -höhe eingegeben. Die Spannweite ist auf 6000 mm und die Höhe auf 3200 mm begrenzt.

Im nächsten Fenster wird die Orientierung der äußeren Decklagen (horizontal oder vertikal) eingestellt. Die horizontale Brettausrichtung eines Sturzbauteils wird nur ausgewählt, wenn das Sturzbauteil als Einzelbauteil produziert wird. Der Anwender sollte sich diesbezüglich mit der Herstellfirma abstimmen. Die Anzahl der Brettlagen ist, in Zweierschritten, von 5 bis 15 wählbar. Die Bauteildicke errechnet sich automatisch aus der festgelegten Brettdicke von 23 mm. Ebenso wie bei der Wandscheibe kann zwischen den Festigkeitsklassen C16 und C24 gewählt werden.

Brettbreite bx (vertikale Brettlagen):	260 mm
Brettbreite by (horizontale Brettlagen):	140 mm

Angaben zun	n Bauteil		
Stützweite	=	2000	mm
Bauteilhöhe	h =	450	mm
Bauteildicke	d =	161	mm

Horizontale Decklagen können eine größere Last aufnehmen wie vertikale Decklagen.

Abschließend wird in diesem Abschnitt die Brettbreite eingestellt. Wenn mit einer fixen Brettbreite produziert wird, können die Breiten im, durch die Zulassung gegebenen, Rahmen von 140 bis 260 mm frei gewählt werden. Ist keine Fixbreite der Bretter gegeben muss der ungünstigste Fall mit bx = 260 mm und by = 140 mm eingegeben werden.

Angaben zum Verbindungsmittel			
Nageldurchmesser d n	2,5	mm	
Randabstand der Nägel ≥	7,0	·d.	17,5
(In der Berechnung wird der Randabstand zu	u 30mm a	anges	etzt)
Anzahl der Nägel je Kreuzungspunkt	2		
Charakt. Tragfähigkeit rechtwinkelig zu Stat	achse		400,0 [N]
Verschiebungsmodul für Gebrauchtauglichke	it Kser:		300,0 [N/mm]

Im zweiten Abschnitt "Angaben zum Verbindungsmittel" wird eingestellt, ob die Elemente standardgemäß mit 2 Nägeln oder mit 4 Nägeln je Brettkreuzungspunkt gefertigt werden, um eine bessere Steifigkeit zu erreichen. Bei Wahl dieser Maßnahme ist eine Rücksprache mit dem Hersteller zwingend erforderlich.

Im dritten Abschnitt "Angaben zu Einwirkungen" werden als erstens die Bauteilnutzungsklassen wie auch die Lasteinwirkungsdauer eingestellt. Die Anwendung für MHM-Wandelemente ist laut Zulassung nur in den Nutzungsklassen 1 und 2 erlaubt. Diese wird durch den Anwender je nach Anwendungsbereich des Bauteils bestimmt. Mit Eingabe der Nutzungsklasse und der Lasteinwirkungsdauer errechnet sich automatisch der Modifikationsbeiwert kmod. Direkt darunter erfolgt die Eingabe der auf den Sturz wirkenden charakteristischen Lasten. Das Programm rechnet diese automatisch in die entsprechenden Design-Werte um.

Angaben zu	Einwirkungen							
Bauteilnutzungsl	klasse NKL	1	1					
Lasteinwirkungsdauer		mit	tel	\Longrightarrow	Modifikationsbeiwert	k _{mae} =	8,0	
Linienlasten	ständig	g. =	4,7 kN/m					
	Nutz/Verkehr	p _k =	2,0 kN/m		$q_{d} = 1,35 \times g_{k} + 1,5 \times$	p _e =	9,3	kN/m

Im unteren Bereich der Seite werden die Materialkennwerte des gewählten Holzes (C16 oder C24) angezeigt.

Materialkennwe charakteristische Fe	erte istigkeits	und Steifigkeitswerte für NH C24			
Biegung	f.m.a.	24,0 [MN/m²]	Elastizitätsmodul parallel	E _{o,men}	11000,0 [MN/m ²]
Zug parallel	FLOR	14,0 [MN/m ²]	Elastizitätsmodul 5% Quantil	Eco	7400,0 [MN/m2]
Druck parallel	feak	21,0 [MN/m ²]	Schubmodul	Green	690,0 [MN/m2]
Druck rechtwinklig	Ferme	2.5 [MN/m ²]	Schubmodul 5% Quantil	Gas = 1/2 × Great	460,0 [MN/m2]
Schub und Torsion	free	2,0 [MN/m ²]	Rollschubmodul	Gs.mast = 0,10 × Gmas	69,0 [MN/m ²]
Rohdichte	Px	350,0 [kg/m²]		GR.13 = 1/3 × GR.maan	46,0 [MN/m2]

Die Eingabe ist somit vollständig. Durch den Button "Nachweisführung" starten Sie die Bemessung.

Berechnung	sblatt	zum baus	tatischer	Nachwe	s von MHM	I-Bauteile	n	
Bauvorhaben:					Position:	1 0		
Datum:	34.04.20	14						
Angebon zum t Statzweite Sasteiliche Basteiliche	tautail 1 - 3 - 4 -	2000 mm 450 mm 261 mm			Decklage hor Anzahl der B Einzelfantibre Postigkeitskie	rs=0/vert=1 rettlagen m = ets d _e = soce	1 23 4444 CD4	
Bretthrolo be (ver Bretthreite by (her	tikale Bretti Izontale Bre	apen)) triagan);	200 mm 200 mm		System:	mm	шш	ասուղ
Angaben zum V Negelzurbream Randeband der N (In der Berechnen Anzehl der Negel in Charekt, Tregfehig Verschebungsmeilt	Apriliadur 4. April <u>2</u> 1 wird dar R 2 Oreazongs Inst rechter of für Gebre	ngsmittel andatatand au punkt nadig zu Staba ochteoglichkeit	2,5 mm 7,0 d _e 20mm angeset 2 chun 4 Roer, 1	47,8 (8) 100,0 [9] 100.0 [9]rtm]	€ € ↓	5.	2000 mm	<u>A</u>
Angaben zu Ein Bestelnsteungekla Leiternerkungsdas Linerlasten	wirkunge me Mil ar ständig	n 1 0, -	al 4.7 kb/m	⇒	Modifikations	bewert k	- a.a	
Materialkonnur	Tists/Verb	atr gre	3,0 km/m		£, + 1,31 × 9	$h_1 + 1, \bar{h} \neq \mu_0 +$	ACE - KOUTH	
cherakteristaute N	eitigkeitz- s	nd Staffgivetav	verte für NH C	26.				
Require Zug panellat Druck panellat Druck netmanelag Bithub und Tansion Rehubelite	$\begin{array}{l} {{{F}_{{{\rm{B}},{{\rm{s}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{\rm{b}},{{\rm{B}}}}}}}}\\ {{{F}_{{{b},{{B}}}}}}}\\ {{{{F}_{{{b},{{B}}}}}}}}\\ {{{{F}_{{{b$	34,0 (MN/H/ 14,0 (MN/H/ 21,0 (MN/H/ 2,5 (MN/H/ 2,3 (MN/H/ 3,0 (M/H/ 300.0 (kg/m/)			Elektrolatum Elektrolatum Schubmodul Schubmodul Rollechubmod	ich <i>i</i> panatal obli 3% Quanti 5% Quantit dat	eq:statestatestatestatestatestatestatestat	11000.0 (MA/WY) 7400.0 (MA/WY) 890.0 (MA/WY) 400.0 (MA/WY) 0 x 0 ₁₀₀ 840.0 (MA/WY) 0 x 0 ₁₀₀ 460.0 (MA/WY)
мнм	D		[Nachweist	hung _	Aungab	•	Spekhom

Der Anwender gelangt nun automatisch auf die Seite "Nachweisführung".

Diese Seite fasst die Ergebnisse der Berechnung zusammen. Das Programm führt die Nachweise im Grenzzustand der Tragfähigkeit und im Grenzzustand der Gebrauchstauglichkeit. Hier wird der jeweilige Ausnutzungsgrad in % angegeben und angezeigt ob der Nachweis erbracht wurde oder nicht.

Sind einzelne oder alle Nachweise fehlgeschlagen und mit einem "Achtung!" markiert, gelangt man über den Button "**Zurück zur Eingabe**" wieder zur Eingabemaske und kann die Daten korrigieren und den Nachweis erneut versuchen.

5.a.1 ⁴	
$e^{t} = \frac{-42}{384 - e/EI} = -8.35 \text{ mm}$ > $\frac{1}{300} = -6.67 \text{ mm}$ Ausnutzungsgr	ad 125% Achtung
384 efEI 300	

Ein zweiseitiges Protokoll zum Nachweis kann über "Druckvorschau" eingesehen oder über "Ausgabe" direkt gedruckt werden. Mittels "Speichern" wird eine Kopie der ausgefüllten Arbeitsmappe gespeichert.

Die genaue Berechnung können Sie im Arbeitsblatt "Berechnung" nachschlagen.

Zurlick zur Eingehe Druc	IHM)	MH
--------------------------	------	----

Versionen

Arbeitsmappe: "Bemessung von Wandscheiben unter vertikaler Beanspruchung mit Kopflast nach DIN EN 1995-1-1:2010-12":

Version 3.1 (April 2014)

Arbeitsmappe: "Bemessung von Sturz-Bauteilen unter Biegebeanspruchung nach DIN EN 1995-1-1:2010-12":

Version 2.1 (April 2014)

Kontakt:

Entwickler:

Bauart Konstruktions GmbH & Co. KG Destouchesstr. 65 80796 München Deutschland Tel.: ++49 (0) 89 30 65 78 64 Fax.: ++49 (0) 89 30 66 78 12 info@bauart-konstruktion.de

Inhaber:

Massiv-Holz-Mauer Entwicklungs GmbH Auf der Geigerhalde 41

87459 Pfronten-Weißbach Deutschland Tel.: ++49 (0) 8332 92 33 19 Fax: ++49 (0) 8332 92 33 11 info@massivholzmauer.de

